Add like
Add dislike
Add to saved papers

Evaluating scientific confidence in the concordance of in vitro and in vivo protective points of departure.

To fulfil the promise of reducing reliance on mammalian in vivo laboratory animal studies, new approach methods (NAMs) need to provide a confident basis for regulatory decision-making. However, previous attempts to develop in vitro NAMs-based points of departure (PODs) have yielded mixed results, with PODs from U.S. EPA's ToxCast, for instance, appearing more conservative (protective) but poorly correlated with traditional in vivo studies. Here, we aimed to address this discordance by reducing the heterogeneity of in vivo PODs, accounting for species differences, and enhancing the biological relevance of in vitro PODs. However, we only found improved in vitro-to-in vivo concordance when combining the use of Bayesian model averaging-based benchmark dose modeling for in vivo PODs, allometric scaling for interspecies adjustments, and human-relevant in vitro assays with multiple induced pluripotent stem cell-derived models. Moreover, the available sample size was only 15 chemicals, and the resulting level of concordance was only fair, with correlation coefficients <0.5 and prediction intervals spanning several orders of magnitude. Overall, while this study suggests several ways to enhance concordance and thereby increase scientific confidence in vitro NAMs-based PODs, it also highlights challenges in their predictive accuracy and precision for use in regulatory decision making.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app