Add like
Add dislike
Add to saved papers

IL-33 aggravates extranodal NK/T cell lymphoma aggressiveness and angiogenesis by activating the Wnt/β-catenin signaling pathway.

Extranodal NK/T cell lymphoma (ENKTCL) is an extremely aggressive form of lymphoma and lacks of specific diagnostic markers. The study intended to unearth the role of interleukin-33 (IL-33) in ENKTCL. RT-qPCR was conducted to assess mRNA levels of ENKTCL tissues and cells, while western blot assay was performed for evaluating protein levels. Plate cloning experiment and transwell assay were employed to measure aggressiveness of ENKTCL. Tube formation assay was executed to determine the angiogenesis ability. Mice ENKTCL xenograft model was designed to probe the impacts of IL-33 in vivo. IL-33 and suppression of tumorigenicity 2 receptor (ST2, receptor of IL-33) were enhanced in ENKTCL. IL-33 inhibition suppressed viability, migration, and invasion of ENKTCL cells. Moreover, IL-33 knockdown restricted angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, Wnt/β-catenin pathway associated proteins (β-catenin, c-myc, and cyclin D1) were downregulated by loss of IL-33. However, these impacts were overturned by Wnt/β-catenin signaling agonist lithium chloride (LiCl). Additionally, IL-33 silencing exerted anti-tumor effect via Wnt/β-catenin pathway in vivo. Silencing of IL-33 inhibited ENKTCL tumorigenesis and angiogenesis by inactivating Wnt/β-catenin signaling pathway. As such, IL-33 might be a prospective treatment target for ENKTCL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app