English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Evaluation of Contractile Function Using Human iPS Cell-derived Cardiomyocytes].

Cardiotoxicity induced by anti-cancer drugs is a significant concern for patients undergoing cancer treatment. Some anti-cancer drugs can damage cardiac muscle cells directly or indirectly, potentially leading to severe heart failure. Various risk factors, including the type and dosage of chemotherapy agents as well as patient background, contribute to the development of cardiotoxicity. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which enable patient-specific toxicity prediction, hold great promise in this regard. However, the practical implementation of hiPSC-CMs-based prediction of anti-cancer drug-induced cardiotoxicity still faces hurdles. One major challenge involves establishing and optimizing experimental systems for evaluating contractile dysfunction, the ultimate output of heart failure, using hiPSC-CMs. Such efforts are currently underway globally, focusing on tailoring functional evaluation systems to the characteristics of hiPSC-CMs. In this paper, we provide an overview of the contraction mechanisms of cardiac cells and introduce a method of measuring contraction that we have developed, and discuss the current status of contractile function evaluation methods using hiPSC-CMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app