Add like
Add dislike
Add to saved papers

SPLUNC1 as a biomarker of pulmonary exacerbations in children with cystic fibrosis.

BACKGROUND: Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is an innate defence protein that acts as an anti-microbial agent and regulates airway surface liquid volume through inhibition of the epithelial sodium channel (ENaC). SPLUNC1 levels were found to be reduced in airway secretions of adults with cystic fibrosis (CF). The potential of SPLUNC1 as a biomarker in children with CF is unknown.

METHODS: We quantified SPLUNC1, interleukin-8 (IL-8) and neutrophil elastase (NE) in sputum of CF children treated with either intravenous antibiotics or oral antibiotics for a pulmonary exacerbation (PEx)s, and in participants of a prospective cohort of CF children with preserved lung function on spirometry, followed over a period of two years.

RESULTS: Sputum SPLUNC1 levels were significantly lower before compared to after intravenous and oral antibiotic therapy for PEx. In the longitudinal cohort, SPLUNC1 levels were found to be decreased at PEx visits compared to both previous and subsequent stable visits. Higher SPLUNC1 levels at stable visits were associated with longer PEx-free time (hazard ratio 0.85, p = 0.04). SPLUNC1 at PEx visits did not correlate with IL-8 or NE levels in sputum or forced expiratory volume in one second (FEV1 ) but did correlate with the lung clearance index (LCI) (r=-0.53, p < 0.001).

CONCLUSION: SPLUNC1 demonstrates promising clinometric properties as a biomarker of PEx in children with CF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app