Add like
Add dislike
Add to saved papers

On-Axis Optical Trapping with Vortex Beams: The Role of the Multipolar Decomposition.

ACS Photonics 2024 Februrary 22
Optical trapping is a well-established, decades old technology with applications in several fields of research. The most common scenario deals with particles that tend to be centered on the brightest part of the optical trap. Consequently, the optical forces keep the particle away from the dark zones of the beam. However, this is not the case when a focused doughnut-shaped beam generates on-axis trapping. In this system, the particle is centered on the intensity minima of the laser beam and the bright annular part lies on the periphery of the particle. Researchers have shown great interest in this phenomenon due to its advantage of reducing light interaction with trapped particles and the intriguing increase in the trapping strength. This work presents experimental and theoretical results that extend the analysis of on-axis trapping with light vortex beams. Specifically, in our experiments, we trap micron-sized spherical silica (SiO2 ) particles in water and we measure, through the power spectrum density method, the trap stiffness constant κ generated by vortex beams with different topological charge orders. The optical forces are calculated from the exact solutions of the electromagnetic fields provided by the generalized Lorentz-Mie theory. We show a remarkable agreement between the theoretical prediction and the experimental measurements of κ. Moreover, our numerical model gives us information about the electromagnetic fields inside the particle, offering valuable insights into the influence of the electromagnetic fields present in the vortex beam trapping scenario.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app