Journal Article
Review
Add like
Add dislike
Add to saved papers

Recent progress in biomaterials-driven ferroptosis for cancer therapy.

Biomaterials Science 2024 January 9
Ferroptosis, first suggested in 2012, is a type of non-apoptotic programmed cell death caused by the buildup of lipid peroxidation and marked by an overabundance of oxidized poly unsaturated fatty acids. During the last decade, researchers have uncovered the formation of ferroptosis and created multiple drugs aimed at it, but due to poor selectivity and pharmacokinetics, clinical application has been hindered. In recent years, biomedical discoveries and developments in nanotechnology have spurred the investigation of ferroptosis nanomaterials, providing new opportunities for the ferroptosis driven tumours treatment. Additionally, hydrogels have been widely studied in ferroptosis because of their unique 3D structure and excellent controllability. By using these biomaterials, it is possible to achieve controlled release and targeted delivery of drugs, thus increasing the potency of the drugs and minimizing adverse effects. Therefore, summarizing the biomedical nanomaterials, including hydrogels, used in ferroptosis for cancer therapy is a must. This article provides an overview of ferroptosis, detailing its properties and underlying mechanisms. It also categorizes and reviews the use of various nanomaterials in ferroptosis, along with relevant explanations and illustrations. In addition, we discuss the opportunities and challenges facing the application of nanomaterials in ferroptosis. Finally, the development prospects of this field are prospected. This review is intended to provide a foundation for the development and application of biomedical nanomaterials in ferroptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app