Add like
Add dislike
Add to saved papers

Assessment of GAFF and OPLS Force Fields for Urea: Crystal and Aqueous Solution Properties.

Molecular simulations such as Monte Carlo, molecular dynamics, and metadynamics have been used to provide insight into crystallization phenomena, including nucleation and crystal growth. However, these simulations depend on the force field used, which models the atomic and molecular interactions, to adequately reproduce relevant material properties for the phases involved. Two widely used force fields, the General AMBER Force Field (GAFF) and the Optimized Potential for Liquid Simulations (OPLS), including several variants, have previously been used for studying urea crystallization. In this work, we investigated how well four different versions of the GAFF force field and five different versions of the OPLS force field reproduced known urea crystal and aqueous solution properties. Two force fields were found to have the best overall performance: a specific urea charge-optimized GAFF force field and the original all-atom OPLS force field. It is recommended that a suitable testing protocol involving both solution and solid properties, such as that used in this work, is adopted for the validation of force fields used for simulations of crystallization phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app