Add like
Add dislike
Add to saved papers

Comparison of microalgal hydrochar and pyrochar: production, physicochemical properties, and environmental application.

Microalgal biomass has been considered the third-generation biofuel production feedstock, but microalgae-derived biochar still needs to be thoroughly understood. This study aims to evaluate the production and physicochemical properties of microalgae-derived hydrochar produced by hydrothermal carbonization (HTC) process by comparison with pyrochar produced by dry thermal carbonization (DTC) process for environmental applications. Microalgal biochar was produced with commercially available Chlorella vulgaris microalgae using HTC and DTC processes under various temperature conditions. Pyrochar presented higher pH, ash contents, porosity, and surface area than hydrochar. Hydrochar gave more oxygen-containing functional groups on the surface and higher lead adsorption than pyrochar, making the microalgal hydrochar applicable in soil amendment and various environmental remediations. HTC could be an economically feasible thermochemical process for microalgal biochar production. It can produce hydrochar with high production yield from wet microalgae at low temperatures without a drying process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app