Add like
Add dislike
Add to saved papers

Fluid-Dependent Single-Frequency Bioelectrical Impedance Fat Mass Estimates Compared to Digital Imaging and Dual X-ray Absorptiometry.

Nutrients 2023 November 2
The need for a practical method for routine determination of body fat has progressed from body mass index (BMI) to bioelectrical impedance analysis (BIA) and smartphone two-dimensional imaging. We determined agreement in fat mass (FM) estimated with 50 kHz BIA and smartphone single lateral standing digital image (SLSDI) compared to dual X-ray absorptiometry (DXA) in 188 healthy adults (69 females and 119 males). BIA underestimated ( p < 0.0001) FM, whereas SLSDI FM estimates were not different from DXA values. Based on limited observations that BIA overestimated fat-free mass (FFM) in obese adults, we tested the hypothesis that expansion of the extracellular water (ECW), expressed as ECW to intracellular water (ECW/ICW), results in underestimation of BIA-dependent FM. Using a general criterion of BMI > 25 kg/m2 , 54 male rugby players, compared to 40 male non-rugby players, had greater ( p < 0.001) BMI and FFM but less ( p < 0.001) FM and ECW/ICW. BIA underestimated ( p < 0.001) FM in the non-rugby men, but SLSDI and DXA FM estimates were not different in both groups. This finding is consistent with the expansion of ECW in individuals with excess body fat due to increased adipose tissue mass and its water content. Unlike SLSDI, 50 kHz BIA predictions of FM are affected by an increased ECW/ICW associated with greater adipose tissue. These findings demonstrate the validity, practicality, and convenience of smartphone SLSDI to estimate FM, seemingly not influenced by variable hydration states, for healthcare providers in clinical and field settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app