Add like
Add dislike
Add to saved papers

High-throughput design of cultured tissue moulds using a biophysical model: optimising cell alignment.

Physical Biology 2023 October 31
The technique presented here identifies tethered mould designs, optimised for growing cultured tissue with very highly-aligned cells. It is based on a microscopic biophysical model for polarised cellular hydrogels. There is an unmet need for tools to assist mould and scaffold designs for the growth of cultured tissues with bespoke cell organisations, that can be used in applications such as regenerative medicine, drug screening and cultured meat. High-throughput biophysical calculations were made for a wide variety of computer-generated moulds, with cell-matrix interactions and tissue-scale forces simulated using a contractile network dipole orientation model. Elongated moulds with central broadening and one of the following tethering strategies are found to lead to highly-aligned cells: (1) tethers placed within the bilateral protrusions resulting from an indentation on the short edge, to guide alignment (2) tethers placed within a single vertex to shrink the available space for misalignment. As such, proof-of-concept has been shown for mould and tethered scaffold design based on a recently developed biophysical model. The approach is applicable to a broad range of cell types that align in tissues and is extensible for 3D scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app