Add like
Add dislike
Add to saved papers

Modified physiology of burley tobacco plants genetically engineered to express Yb 1 , a functional EGY enzyme.

Planta 2023 September 19
Transgenic overexpression of a NtEGY2 gene restores normal green color of burley tobacco plants, but does not increase nitrogen utilization efficiency beyond that exhibited by wild-type individuals. Nitrogen physiology is important in tobacco because of its role in generation of leaf yield and accumulation of nitrogen-containing alkaloids that can react with nitrosating agents in the formation of carcinogenic tobacco-specific nitrosamines. Cultivars of the burley tobacco market class are homozygous for deleterious mutant alleles at the duplicate Yb1 and Yb2 loci which have previously been associated with decreased nitrogen use and utilization efficiency; increased leaf nitrate, total nitrogen, and alkaloid levels; and reduced yields. How mutant alleles at these two loci affect these traits is not well understood. Recent characterization of the Yb1 and Yb2 genes (homologs of Arabidopsis EGY1 gene) enabled overexpression of the wild-type Yb1 allele in yb1 yb1 yb2 yb2 plants to determine if observed unfavorable effects were due to linkage or pleiotropy, and to determine if overexpression could lead to beneficial modifications in any of these traits in transgenic plants relative to naturally-occurring wild-type genotypes. Yb1 overexpression was found to confer an agronomic benefit to yb1 yb1 yb2 yb2 genotypes but no advantage to wild-type genotypes. RNA-Seq was used to carry out a comparative transcriptome analysis of genetically engineered and wild-type nearly isogenic lines (NILs) to gain insight on metabolic pathways affecting carbon and nitrogen metabolism that might be altered as the result of genetic variability at the Yb1 and Yb2 loci. Results indicate that complex changes in the transcriptome of tobacco can be manifested by altered expression of Yb1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app