Add like
Add dislike
Add to saved papers

Muscle-tendon unit mechanobiological responses to consecutive high strain cyclic loading.

In response to a mechanical stimulus, tendons have a slower tissue renewal rate compared to muscles. This could over time lead to a higher mechanical demand (experienced strain) for the tendon, especially when a high strain magnitude exercise is repeated without sufficient recovery. The current study investigated the adaptive responses of the triceps surae (TS) muscle-tendon unit (MTU) and extracellular matrix turnover-related biomarkers to repetitive high tendon strain cyclic loading. Eleven young male adults performed a progressive resistance exercise over 12 consecutive days, consisting of high Achilles tendon (AT) strain cyclic loading (90% MVC) with one leg once a day (LegT1) and the alternate leg three times a day (LegT3). Exercise-related changes in TS MTU mechanical properties and serum concentrations of extracellular matrix turnover-related biomarkers were analysed over the intervention period. Both legs demonstrated similar increases in maximal AT force (∼10%) over the 12-day period of exercise. A ∼20% increase in maximal AT strain was found for LegT3 (p<0.05) already after 8 consecutive exercise days, along with a corresponding decrease in AT stiffness. These effects were maintained even after a 48h rest period. The AT mechanical properties for LegT1 were unaltered. Biomarker analysis revealed no sign of inflammation, but altered collagen turnover and delayed increase in the collagen type I synthesis rate. Accordingly, we suggest that tendon is vulnerable to frequent high-magnitude and volume of cyclic mechanical loading, as accumulation of micro-damage can potentially exceed the rate of biological repair, leading to increased maximal tendon strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app