Add like
Add dislike
Add to saved papers

Fabrication, optimization and characterization of an osmotic push-pull drug delivery system for paliperidone.

OBJECTIVES: Paliperidone is a BCS class II drug with low solubility and high permeability. It has 28% absolute oral bioavailability and an elimination half-life of 23 h. An osmotic push-pull trilayer tablet currently available on the market has achieved controlled release of a low dose over an extended time period, while avoiding the need for a loading dose. However, this trilayer tablet has several disadvantages, such as complicated processing, high production costs and difficulty in achieving uniformity of the contents. Thus, the objective of this study was to overcome the above difficulties associated with paliperidone and to formulate a bilayer tablet with a similar drug profile to that of the reference listed drug Invega®.

METHODS: The bilayer tablets were prepared by optimization of the core and semi-permeable membrane. Effects of the curing time, and the size and number of orifices on the prepared tablets' dissolution profile were analyzed. Two different grades of polyethylene oxide were used in the core and push layer as pore formers.

RESULTS: The weight variation, friability and hardness values of the prepared tablets were well within compendium limits. The optimized bilayer parameters for the prepared tablets were curing time, 5 h; seal coat, 7% w/w; ER coat, 13% w/w; orifice size, 0.6 mm; and orifice number, 2. Further tablet formulation resulted in an F2 value of 75.67, indicating a dissolution profile similar to that of Invega®.

CONCLUSION: Bi-layer tablets of paliperidone overcoming the drawbacks of the marketed formulation were successfully prepared, and offer advantages such as a simpler preparation process, cost effectiveness and faster preparation of the tablet core.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app