Add like
Add dislike
Add to saved papers

20 kDa isoform of connexin-43 augments spatial reorganization of the brain endothelial junctional complex and lesion leakage in cerebral cavernous malformation type-3.

Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown. The current study examined brain endothelial barrier structural defects formed in the absence of CCM3 in vivo and in vitro that may lead to CCM3 lesion leakage. We found significant upregulation of a 20 kDa isoform of connexin 43 (GJA1-20 k) in brain endothelial cells (BEC) in both non-leaky and leaky lesions, as well as in an in vitro CCM3 knockdown model (CCM3KD-BEC). Morphological, biochemical, FRET, and FRAP analyses of CCM3KD-BEC found GJA1-20 k regulates full-length GJA1 biogenesis, prompting uncontrolled gap junction growth. Furthermore, by binding to a tight junction scaffolding protein, ZO-1, GJA1-20 k interferes with Cx43/ZO-1 interactions and gap junction/tight junction crosstalk, promoting ZO-1 dissociation from tight junction complexes and diminishing claudin-5/ZO-1 interaction. As a consequence, the tight junction complex is destabilized, allowing "replacement" of tight junctions with gap junctions leading to increased brain endothelial barrier permeability. Modifying cellular levels of GJA1-20 k rescued brain endothelial barrier integrity re-establishing the spatial organization of gap and tight junctional complexes. This study highlights generation of potential defects at the CCM3-affected brain endothelial barrier which may underlie prolonged vascular leakiness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app