Add like
Add dislike
Add to saved papers

Proteinase K/Retinoic Acid-Loaded Cationic Liposomes as Multifunctional Anti-Acne Therapy to Disorganize Biofilm and Regulate Keratinocyte Proliferation.

BACKGROUND: Simultaneous anti- Cutibacterium acnes and anti-inflammatory actions are highly beneficial in treating acne vulgaris. In this study, we present novel anti-acne nanovesicles based on liposomes loaded with proteinase K (PK), retinoic acid (RA), and soyaethyl morpholinium ethosulfate (SME) to achieve an effective and safe treatment.

MATERIALS AND METHODS: This study examined in vitro planktonic and biofilm C. acnes elimination, as well as the keratinocyte proliferation suppression by liposomes. The multifunctional liposomes for treating C. acnes in mice were also evaluated.

RESULTS: We acquired multifunctional liposomes with a size of 71 nm and zeta potential of 31 mV. The antimicrobial activity of SME was enhanced after liposomal encapsulation according to the reduction of minimum bactericidal concentration (MBC) by 6-fold. The multifunctional liposomes exhibited a synergistically inhibitory effect on biofilm C. acnes colonization compared with the liposomes containing PK or those containing SME individually. The adhesive bacterial colony in the microplate was lessened by 62% after multifunctional liposome intervention. All liposomal formulations tested here demonstrated no cytotoxicity against the normal keratinocytes but inhibited C. acnes -stimulated cell hyperproliferation. The in vitro scratch assay indicated that the liposomal RA-but not free RA-restrained keratinocyte migration. The animal study showed that free RA combined with SME and multifunctional nanovesicles had a similar effect on diminishing C. acnes colonies in the skin. On the other hand, liposomes exhibited superior performance in recovering the impaired skin barrier function than the free control. We also found that RA-loaded nanovesicles had greater skin tolerability than free RA.

CONCLUSION: The cationic liposomes containing dual PK and RA represented a potential treatment to arrest bacterial infection and associated inflammation in acne.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app