Add like
Add dislike
Add to saved papers

The Analysis of Pethidine Pharmacokinetics in Newborn Saliva, Plasma, and Brain Extracellular Fluid After Prenatal Intrauterine Exposure from Pregnant Mothers Receiving Intramuscular Dose Using PBPK Modeling.

BACKGROUND AND OBJECTIVE: Pethidine (meperidine) can decrease labor pain-associated mother's hyperventilation and high cortisol-induced newborn complications. However, prenatal transplacentally acquired pethidine can cause side effects in newborns. High pethidine concentrations in the newborn brain extracellular fluid (bECF) can cause a serotonin crisis. Therapeutic drug monitoring (TDM) in newborns' blood distresses them and increases infection incidence, which can be overcome by using salivary TDM. Physiologically based pharmacokinetic (PBPK) modeling can predict drug concentrations in newborn plasma, saliva, and bECF after intrauterine pethidine exposure.

METHODS: A healthy adult PBPK model was constructed, verified, and scaled to newborn and pregnant populations after intravenous and intramuscular pethidine administration. The pregnancy PBPK model was used to predict the newborn dose received transplacentally at birth, which was used as input to the newborn PBPK model to predict newborn plasma, saliva, and bECF pethidine concentrations and set correlation equations between them.

RESULTS: Pethidine can be classified as a Salivary Excretion Classification System class II drug. The developed PBPK model predicted that, after maternal pethidine intramuscular doses of 100 mg and 150 mg, the newborn plasma and bECF concentrations were below the toxicity thresholds. Moreover, it was estimated that newborn saliva concentrations of 4.7 µM, 11.4 µM, and 57.7 µM can be used as salivary threshold concentrations for pethidine analgesic effects, side effects, and the risk for serotonin crisis, respectively, in newborns.

CONCLUSION: It was shown that saliva can be used for pethidine TDM in newborns during the first few days after delivery to mothers receiving pethidine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app