Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

GABAergic circuits drive focal seizures.

Epilepsy is based on abnormal neuronal activities that have historically been suggested to arise from an excess of excitation and a defect of inhibition, or in other words from an excessive glutamatergic drive not balanced by GABAergic activity. More recent data however indicate that GABAergic signaling is not defective at focal seizure onset and may even be actively involved in seizure generation by providing excitatory inputs. Recordings of interneurons revealed that they are active at seizure initiation and that their selective and time-controlled activation using optogenetics triggers seizures in a more general context of increased excitability. Moreover, GABAergic signaling appears to be mandatory at seizure onset in many models. The main pro-ictogenic effect of GABAergic signaling is the depolarizing action of GABAA conductance which may occur when an excessive GABAergic activity causes Cl- accumulation in neurons. This process may combine with background dysregulation of Cl- , well described in epileptic tissues. Cl- equilibrium is maintained by (Na+ )/K+ /Cl- co-transporters, which can be defective and therefore favor the depolarizing effects of GABA. In addition, these co-transporters further contribute to this effect as they mediate K+ outflow together with Cl- extrusion, a process that is responsible for K+ accumulation in the extracellular space and subsequent increase of local excitability. The role of GABAergic signaling in focal seizure generation is obvious but its complex dynamics and balance between GABAA flux polarity and local excitability still remain to be established, especially in epileptic tissues where receptors and ion regulators are disrupted and in which GABAergic signaling rather plays a 2 faces Janus role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app