Add like
Add dislike
Add to saved papers

Evaluation of blood lead levels in opium addicts and healthy control group using novel deep eutectic solvent based dispersive liquid-liquid microextraction followed by GFAAS.

Today, drug dealers and sellers add lead compounds to these substances to get more profit. As a result, drug users are heavily exposed to lead, and lead poisoning is clearly seen in most of them. Therefore, it is especially important to check the blood lead levels in these people. In this research, an efficient and eco-friendly pretreatment method was established by deep eutectic solvent for dispersive liquid-liquid microextraction (DES - DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) analysis. The selected hydrophilic deep eutectic solvent consists of l-menthol and (1S)-( +)-camphor-10-sulfonic acid (CSA) at a 5:1 molar ratio as a green solvent instead of traditional toxic organic solvents. Under the optimal extraction conditions, the introduced method exhibited good linearity with coefficient of determination (r2 ) 0.9975 and an acceptable linear range of 0.3-80 µg L-1 . Accordingly, the detection limit was 0.1 µg L-1 (S/N = 3) for lead ions, and the high enrichment factor (240) was obtained. The proposed method was successfully applied to analysis lead ions in real blood samples, which is a promising technique for biological samples. The case samples were classified and analyzed based on age, duration of consumption, and type of substance. The results showed that there was no significant difference between blood lead levels in different age groups and different duration of use, while blood lead levels were higher in opium residue (shireh) users than in opium users.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app