Add like
Add dislike
Add to saved papers

Quantitative Evaluation of the Reduced Capacity of Skeletal Muscle Hypertrophy after Total Body Irradiation in Relation to Stem/Progenitor Cells.

The effects of total body irradiation (TBI) to the capacity of skeletal muscle hypertrophy were quantified using the compensatory muscle hypertrophy model. We additionally assessed the responses of stem and/or progenitor cells in the muscles. A single TBI of 9.0, 5.0 and 2.5 Gy was delivered to C57BL/6 mice. Bone marrow stromal cells were obtained from GFP-Tg mice, and were injected into the tail vein of the recipient mice (1 × 106 cells/mouse), for bone marrow transplantation (BMT). Five weeks after TBI, the mean GFP-chimerism in the blood was 96 ± 0.8% in the 9 Gy, 83 ± 3.9% in the 5 Gy, and 8.4 ± 3.4% in the 2.5 Gy groups. This implied that the impact of 2.5 Gy is quite low and unavailable as the BMT treatment. Six weeks after the TBI/BMT procedure, muscle hypertrophy was induced in the right plantaris muscle by surgical ablation (SA) of the synergist muscles (gastrocnemius and soleus), and the contralateral left side was preserved as a control. The muscle hypertrophy capacity significantly decreased by 95% in the 9 Gy, 48% in the 5 Gy, and 36% in the 2.5 Gy groups. Furthermore, stem/progenitor cells in the muscle were enzymatically isolated and fractionated into non-sorted bulk cells, CD45-/34-/29+ (Sk-DN), and CD45-/34+ (Sk-34) cells, and myogenic capacity was confirmed by the presence of Pax7+ and MyoD+ cells in culture. Myogenic capacity also declined significantly in the Bulk and Sk-DN cell groups in all three TBI conditions, possibly implying that skeletal muscles are more susceptible to TBI than bone marrow. However, interstitial Sk-34 cells were insusceptible to TBI, retaining their myogenic/proliferative capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app