Add like
Add dislike
Add to saved papers

Deletion of RBP-Jkappa gene in mesenchymal cells causes rickets like symptoms in the mouse.

Crosstalk between different signalling pathways provide deep insights for how molecules play synergistic roles in developmental and pathological conditions. RBP-Jkappa is the key effector of the canonical Notch pathway. Previously we have identified that Wnt5a, a conventional non-canonical Wnt pathway member, was under the direct transcriptional control of RBP-Jkappa in dermal papilla cells. In this study we further extended this regulation axis to the other two kind of skeletal cells: chondrocytes and osteoblasts. Mice with conditional mesenchymal deletion of RBP-Jkappa developed Rickets like symptoms. Molecular analysis suggested local defects of Wnt5a expression in chondrocytes and osteoblasts at both mRNA and protein levels, which impeded chondrocyte and osteoblast differentiation. The defects existing in the RBP-Jkappa deficient mutants could be rescued by recombinant Wnt5a treatment at both cellular level and tissue/organ level. Our results therefore provide a model of studying the connection of Notch and Wnt5a pathways with Rickets.

Supplementary Information: The online version contains supplementary material available at 10.1007/s44194-022-00007-w.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app