Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of maternal ritodrine hydrochloride administration on the heart rate of preterm fetal sheep with intraamniotic inflammation.

Ritodrine hydrochloride is used for pregnancy prolongation and intrauterine fetal resuscitation. However, its clinical significance in intraamniotic inflammation during preterm labor and intrauterine fetal distress is unclear. We investigated the effects of maternal ritodrine hydrochloride administration (MRA; 200 μg/min for 2 h, followed by 800 μg/min for 2 h after 24 h) on fetal physiological parameters. For this purpose, we used chronically instrumented pregnant sheep at 113-119 d (term = 145 d) of gestation without (Group 1, n = 5) and with (Group 2, n = 5) intraamniotic inflammation induced by lipopolysaccharide injection into the amniotic cavity. The changes in fetal heart rate (FHR) and short-term variability (STV) and long-term variability (LTV) in FHR, fetal blood pressure, and fetal arterial blood gas (FABG) values were measured before and at 1 and 2 h after initiating MRA. Before MRA, all parameters were similar between Groups 1 and 2; however, there was significantly higher STV in Group 2 than in Group 1 before MRA at 800 μg/min, significantly higher partial arterial pressure of carbon dioxide in FABG in Group 2 than in Group 1 before MRA at 200 μg/min, and significantly lower blood glucose (BG) in Group 2 than in Group 1 before MRA at 800 μg/min. One hour after MRA, the FHR, STV, and LTV were significantly higher at 800 μg/min than those at the baseline in Group 1, as determined by the Friedman test; however, no significant difference was observed in Group 2. Additionally, the FABG pH significantly decreased 1 h after MRA at 800 μg/min in Group 2, whereas FABG lactate and BG significantly increased 2 h after MRA at 800 μg/min in Groups 1 and 2. Thus, short-term MRA at 800 μg/min increased the FHR, STV, and LTV significantly; these values were further modified under intraamniotic inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app