Add like
Add dislike
Add to saved papers

One-pot synthesis of 68 Ga-doped ultrasmall gold nanoclusters for PET/CT imaging of tumors.

Gold nanoclusters (AuNCs) have attracted much attention for tumor theranostics in recent years because of their ability of renal clearance and to escape the reticuloendothelial system (RES) sequestration. In this study, we presented a novel method to synthesize 68 Ga-doped (labeled) AuNCs by simultaneous reduction of 68 GaCl3 and HAuCl4 by glutathione. As synthesized 68 Ga-doped, glutathione-coated AuNCs (68 Ga-GSH@AuNCs) were ultrasmall in size (<2 nm), highly stable under physiological conditions and renally clearable, and had high efficiency for tumor targeting. To demonstrate the universality of this 68 Ga labeling method and further enhance tumor targeting efficiency, arginine-glycine-aspartate (RGD)-containing peptide was introduced as co-reductant to synthesize RGD peptide and glutathione co-coated, 68 Ga-labeled AuNCs (68 Ga-RGD-GSH@AuNCs). Introduction of RGD peptide did not interfere the synthesis process but significantly enhanced the tumor targeting efficiency of the AuNCs. Our study demonstrated that it was feasible to label AuNCs with gallium-68 by direct reduction of the radioisotope and HAuCl4 with reductant peptides, holding a great potential for clinical translation for PET/CT detection of tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app