Add like
Add dislike
Add to saved papers

Screening and identification of key genes in imatinib-resistant chronic myelogenous leukemia cells: a bioinformatics study.

BACKGROUND: Chronic myelogenous leukemia (CML) is one of the most common cancers in the world. Imatinib is one of the most effective therapeutic strategies to inhibit the BCR-ABL tyrosine Kinase in patients with CML, but resistance is increasingly encountered.

MATERIAL AND METHODS: Microarray data GSE7114, GSE92624 and GSE97562 were downloaded and analyzed from Gene Expression Omnibus (GEO) to identify the candidate genes in the imatinib-resistant CML cells. The differentially expressed genes (DEGs) were appraised, and the protein-protein interaction (PPI) network was created by using STRING and Cytoscape.

RESULTS: We screened a total of 217 DEGs, including 151 upregulated genes and 66 downregulated genes. The enriched functions and pathways of genes include insulin-like growth factor I binding, cysteine-type endopeptidase inhibitor activity involved in apoptotic process, cell adhesion, positive regulation of nitric oxide biosynthetic process and hematopoietic cell lineage. Nine hub genes were appraised and Gene Ontology enrichment analysis revealed that these genes are mainly enriched in cell cycle, peptidase inhibitor activity and cell division. Several genes such as BIRC5, CCNE2 and MCM4 were identified in survival analysis and these genes alteration are significantly associated with worse overall survival and disease-free survival.

CONCLUSIONS: These genes have the potential to become surrogate markers for a clinical evaluation of imatinib-resistant CML patients. Our results provide potential target genes for diagnosis and treatment of imatinib-resistant CML patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app