Add like
Add dislike
Add to saved papers

Providing unloading by exoskeleton improves shoulder flexion performance after stroke.

Robotic devices can be engaged actively or passively to unload arm weight or impose additional loading. The conditions of variable loading and unloading offer an opportunity to investigate motor performance of the arm affected by a stroke. The objective of this study was to investigate the interactive effects of the proximal arm impairment and passive weight compensation on shoulder flexion performance in the sagittal plane after stroke. Twenty-eight participants (age 57 ± 10 years, 21/28 ≤ 6 weeks post-stroke) played a shoulder flexion game under five standardized weight compensation configurations provided by the Armeo® Spring exoskeleton. Percent of targets acquired and root mean square error were calculated to derive three behavioral and three kinematic outcomes: total score/overall error (loading/unloading conditions and five configurations combined), loading and unloading score/error (five configurations combined), and weight compensation configuration score/error for each setting separately. The total score was positively related and the overall error was negatively related to proximal arm impairment (Fugl-Meyer upper extremity movement subscale, maximum 30, FM30). The unloading score (80 ± 27%) and error (5 ± 4°) were significantly better than the loading score (45 ± 38%, p < 0.01) and error (14± 9°, p < 0.01) with improvements most pronounced in the mid-range of FM30 (4-15 points). The configuration scores/error gradually improved with each increment in unloading for the mid-range FM30 participants, while only error improved in those with low FM30. In conclusion, shoulder flexion performance depends on proximal arm impairment, but it is also influenced by the degree of unloading/loading provided, particularly among individuals with moderate paresis after stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app