Add like
Add dislike
Add to saved papers

Fluid-Structure Coupling Model and Experimental Validation of Interaction Between Pneumatic Soft Actuator and Lower Limb.

Soft Robotics 2020 October
Pneumatic soft actuators (PSAs) are components that produce predesigned motion or force in different end-use devices. PSAs are lightweight, flexible, and compatible in human-machine interaction. The use of PSAs in compression therapy has proven promising in proactive pressure delivery with a wide range of dosages for treatment of chronic venous insufficiency and lymphedema. However, effective design and control of PSAs for dynamic pressure delivery have not been fully elaborated. The purpose of this study is to explore interactive working mechanisms between a PSA and lower limbs through establishing fluid-structure coupling models, an intermittent pneumatic compression (IPC) testing system, and conducting experimental validation. The developed IPC testing system consisted of a PSA unit (multichambered bladders laminated with an external textile shell), a pneumatic controller, and various real-time pressure monitoring sensors and accessory elements. The established coupling model characterized the dynamic response process with varying design parameters of the PSA unit, and demonstrated that the design of initial thickness, stiffness, and air mass flow of the PSA, as well as stiffness of limb tissues of the users, influenced PSA-lower limb interactions and resultant pressure dosages. The simulated results presented a favorable agreement with the experimental data collected by the IPC testing system. This study enhanced understanding of PSA-lower limb interactive working mechanisms and provided an evidence-based technical guidance for functional design of PSA. These results contribute to improving the efficacy of dynamic compression therapy for promotion of venous hemodynamics and user compliance in practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app