Add like
Add dislike
Add to saved papers

Enhancement of transport properties in single ZnSe nanowire field-effect transistors.

Nanotechnology 2019 Februrary 2
Wide-gap semiconductors are excellent candidates for next-generation optoelectronic devices, including tunable emitters and detectors. ZnSe nanowire-based devices show great promise in blue emission applications, since they can be easily and reproducibly fabricated. However, their utility is limited by deep level defect states that inhibit optoelectronic device performance. The primary objective of this work is to show how the performance of ZnSe nanowire devices improves when nanowires are subjected to a post-growth anneal treatment in a zinc-rich atmosphere. We use low temperature photoluminescence spectroscopy to determine the primary recombination mechanisms and associated defect states. We then characterize the electronic properties of ZnSe nanowire field effect transistors fabricated from both as-grown and Zn-annealed nanowires, and measure an order-of-magnitude improvement to the electrical conductivity and mobility after the annealing treatment. We show that annealing reduces the concentration of zinc vacancies, which are responsible for strong compensation and high amounts of scattering in the as-grown nanowires.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app