Add like
Add dislike
Add to saved papers

Virtual electrophysiological study as a tool for evaluating efficacy of MRI techniques in predicting adverse arrhythmic events in ischemic patients.

Myocardial infarct (MI) related indices determined by late gadolinium enhancement (LGE) MRI have been widely investigated in determining patients suitable for implantable cardiovascular-defibrillator (ICD) therapy to complement left ventricular ejection fraction (LV EF). In comparison to LGE-MRI using inversion-recovery fast-gradient-echo (IR-FGRE), T1 mapping techniques, such as multi contrast late enhancement (MCLE), have been shown to provide more quantitative and reproducible estimates of infarct regions. The objective of this study is to use individualized heart computer models in determining the efficacy of IR-FGRE and MCLE techniques in predicting the occurrence of post-MI ventricular tachycardia (VT). Twenty-seven patients with MI underwent LGE-MRI using IR-FGRE and MCLE prior to ICD implantation and were followed up for 6-46 months. Individualized image-based computational models were built separately for each imaging technique; simulations of propensity to VT were conducted with each model. The imaging methods were evaluated by comparing simulated inducibility of VT to clinical outcome (appropriate ICD therapy) in patients. Twelve patients had at least one appropriate ICD therapy for VT at follow-up. For both MCLE and IR-FGRE, the outcomes of the simulations of VT were significantly associated with the events of appropriate ICD therapy. This indicates that, as compared to conventional measurements such as LV EF, the simulations of VT corresponding to both MCLE and IR-FGRE were more sensitive in predicting appropriate ICD therapy in post-MI patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app