Add like
Add dislike
Add to saved papers

Selection of Informative Examples in Chemogenomic Datasets.

High-throughput and high-content screening campaigns have resulted in the creation of large chemogenomic matrices. These matrices form the training data which is used to build ligand-target interaction models for pharmacological and chemical biology research. While academic, government, and industrial efforts continuously add to the ligand-target data pairs available for modeling, major research efforts are devoted to improving machine learning techniques to cope with the sparseness, heterogeneity, and size of available datasets as well as inherent noise and bias. This "race of arms" has led to the creation of algorithms to generate highly complex models with high prediction performance at the cost of training efficiency as well as interpretability.In contrast, recent studies have challenged the necessity for "big data" in chemogenomic modeling and found that models built on larger numbers of examples do not necessarily result in better predictive abilities. Automated adaptive selection of the training data (ligand-target instances) used for model creation can result in considerably smaller training sets that retain prediction performance on par with training using hundreds of thousands of data points. In this chapter, we describe the protocols used for one such iterative chemogenomic selection technique, including model construction and update as well as possible techniques for evaluations of constructed models and analysis of the iterative model construction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app