Add like
Add dislike
Add to saved papers

Characterization of Australian Labradoodle dystrophinopathy.

In humans, dystrophin mutations cause the X-linked recessive disorder known as Duchenne muscular dystrophy (DMD). These mutations result in skeletal and cardiac muscle damage with mortality increasingly associated with cardiomyopathy. We have identified a novel dystrophin mutation in exon 21 in a line of Australian Labradoodles; affected dogs develop progressive clinical signs including poor weight gain and weight loss, gait abnormalities, exercise intolerance, skeletal muscle atrophy, macroglossa, ptyalism, dysphagia, kyphosis, and a plantigrade stance. Echocardiographic abnormalities include hyperechoic foci in the left ventricular papillary muscles, septal hypokinesis, and decreased left ventricular systolic and diastolic volume and internal diameter. Holter recordings found a Mobitz type II second-degree atrioventricular (AV) block in one affected dog. Analysis of phosphocreatine-to-ATP ratios (PCr/ATP) (obtained via cardiac magnetic resonance imaging and spectroscopy evaluation), found no statistically significant difference in the mean PCr/ATP between groups. Histopathologic skeletal muscle changes included fibrofatty infiltration, myocyte degeneration, necrosis, and regeneration, lymphohistiocytic inflammation, and mineralization; cardiac changes were limited to a focal area of mineralization adjacent to the sinoatrial node in the dog with a second-degree AV block. Due to rapidly progressive clinical signs, a severe phenotype, and potential for cardiac involvement, Australian Labradoodle dystrophinopathy may be a useful model to further study DMD pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app