Add like
Add dislike
Add to saved papers

Detrended fluctuation analysis detects altered coordination of running gait in athletes following a heavy period of training.

OBJECTIVES: To investigate whether functional overreaching affects locomotor system behaviour when running at fixed relative intensities and if any effects were associated with changes in running performance.

DESIGN: Prospective intervention study.

METHODS: Ten trained male runners completed three training blocks in a fixed order. Training consisted of one week of light training (baseline), two weeks of heavy training designed to induce functional overreaching, and ten days of light taper training designed to allow athletes to recover from, and adapt to, the heavy training. Locomotor behaviour, 5-km time trial performance, and subjective reports of training status (Daily Analysis of Life Demands for Athletes (DALDA) questionnaire) were assessed at the completion of each training block. Locomotor behaviour was assessed using detrended fluctuation analysis of stride intervals during running at speeds corresponding to 65% and 85% of maximum heart rate (HRmax ) at baseline.

RESULTS: Time trial performance (effect size ±95% confidence interval (ES): 0.16±0.06; p<0.001), locomotor behaviour at 65% HRmax (ES: -1.12±0.95; p=0.026), and DALDA (ES: 2.55±0.80; p<0.001) were all detrimentally affected by the heavy training. Time trial performance improved relative to baseline after the taper (ES: -0.16±0.10; p=0.003) but locomotor behaviour at 65% HRmax (ES: -1.18±1.17; p=0.048) and DALDA (ES: 0.92±0.90; p=0.045) remained impaired.

CONCLUSIONS: Locomotor behaviour during running at 65% HRmax was impaired by functional overreaching and remained impaired after a 10-day taper, despite improved running performance. Locomotor changes may increase injury risk and should be considered within athlete monitoring programs independently of performance changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app