Add like
Add dislike
Add to saved papers

Ferrihydrite Nanoparticle Aggregation Induced by Dissolved Organic Matter.

Ferrihydrite (Fh) nanoparticles are omnipresent in nature and often highly mobile because of their colloidal stability. Thus, Fh serves as a vector for iron as well as associated nutrients and contaminants. Here, we demonstrate, using small-angle X-ray scattering combined with cryo-transmission electron microscopy (cryo-TEM), that dissolved organic matter (DOM), extracted from a boreal forest soil, induce aggregation of Fh nanoparticles, of radius 3 nm, into fractal aggregates, having a fractal dimension D = 1.7. The DOM consists of both fractal-like colloids (>100 nm) and small molecular DOM, but the attractive Fh interparticle interaction was mediated by molecular DOM alone as shown by cryo-TEM. This highlights the importance of using soil extracts, including all size fractions, in studies of the colloidal behavior of DOM-mineral aggregates. The Fh nanoparticles also self-assemble during synthesis into aggregates with the same fractal dimension as the DOM-Fh aggregates. We propose that, in both the absence and presence of DOM, the aggregation is controlled by the Fh particle charge, and the process can be viewed as a linear polymerization into a self-avoiding random walk structure. The theoretical D value for this is 5 /3 , which is in close agreement with our Fh and DOM-Fh results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app