Add like
Add dislike
Add to saved papers

Prediction of Adverse Glycemic Events from Continuous Glucose Monitoring Signal.

The most important objective of any diabetes therapy is to maintain the blood glucose concentration within the euglycemic range, avoiding or at least mitigating critical hypo/hyperglycemic episodes. Modern Continuous Glucose Monitoring (CGM) devices bear the promise of providing the patients with an increased and timely awareness of glycemic conditions as these get dangerously near to hypo/hyperglycemia. The challenge is to detect, with reasonable advance, the patterns leading to risky situations, allowing the patient to make therapeutic decisions on the basis of future (predicted) glucose concentration levels. We underline that a technically sound performance comparison of the approaches that have been proposed in recent years is still missing, and is thus unclear which one is to be preferred. The aim of this study is to fill this gap, by carrying out a comparative analysis among the most common methods for glucose event prediction. Both regression and classification algorithms have been implemented and analyzed, including static and dynamic training approaches. The dataset consists of 89 CGM time series measured in diabetic subjects for 7 subsequent days. Performance metrics, specifically defined to assess and compare the event prediction capabilities of the methods, have been introduced and analyzed. Our numerical results show that a static training approach exhibits better performance, in particular when regression methods are considered. However, classifiers show some improvement when trained for a specific event category, such as hyperglycemia, achieving performance comparable to the regressors, with the advantage of predicting the events sooner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app