Add like
Add dislike
Add to saved papers

Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems.

Chaos 2018 June
Studies on the structural-functional connectomes of the human brain have demonstrated the existence of synchronous firings in a specific brain network motif. In particular, synchronization of high-frequency oscillations (HFOs) has been observed in the experimental data sets of temporal lobe epilepsy (TLE). In addition, both clinical and experimental evidences have accumulated to demonstrate the effect of electrical stimulation on TLE, which, however, remains largely unexplored. In this work, we first employ our previously proposed dentate gyrus (DG)-CA3 network model to investigate the influence of an external electrical stimulus on the HFO transitions. The results indicate that the reinforcing stimulus can induce the HFO transitions of the DG-CA3 system from the gamma band to the fast ripples band. Along with that, the consistent oscillations of neurons within DG-CA3 can also be enhanced with the increasing of stimulus. Then, we expand into a simple motif of three coupled DG-CA3 systems in both the feedforward inhibition and feedback inhibition connections, to investigate the synchronous evolutions of HFOs by regulating both the stimulation strength and inhibitory function. It is shown that the comprehensive effects, which lead to band transition, are independent of the motif configurations. The enhanced external electrical stimulus weakens the synchronism and correlation of connected motifs. In contrast, we demonstrate that the increased inhibitory coupling could facilitate correlation to some extent. Overall, our work highlights the possible origin of synchronous HFOs of hippocampal motifs governed by external inputs and inhibitory connection, which might contribute to a better understanding of the interplay between synchronization dynamics and epileptic structure in the human brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app