Add like
Add dislike
Add to saved papers

Quantitative EEG reflects non-dopaminergic disease severity in Parkinson's disease.

OBJECTIVE: In Parkinson's Disease (PD), measures of non-dopaminergic systems involvement may reflect disease severity and therefore contribute to patient-selection for Deep Brain Stimulation (DBS). There is currently no determinant for non-dopaminergic disease severity. In this exploratory study, we investigated whether quantitative EEG reflects non-dopaminergic disease severity in PD.

METHODS: Sixty-three consecutive PD patients screened for DBS were included (mean age 62.4 ± 7.2 years, 32% females). Relative spectral powers and the Phase-Lag-Index (PLI) reflecting functional connectivity were analysed on routine EEGs. Non-dopaminergic disease severity was quantified using the SENS-PD score and its subdomains; motor-severity was quantified using the MDS-UPDRS III.

RESULTS: The SENS-PD composite score correlated with a spectral ratio ((δ + θ)/(α1 + α2 + β) powers) (global spectral ratio Pearson's r = 0.4, 95% Confidence Interval (95%CI) 0.1-0.6), and PLI in the α2 band (10-13 Hz) (r = -0.3, 95%CI -0.5 to -0.1). These correlations seem driven by the subdomains cognition and psychotic symptoms. MDS-UPDRS III was not significantly correlated with EEG parameters.

CONCLUSIONS: EEG slowing and reduced functional connectivity in the α2 band were associated with non-dopaminergic disease severity in PD.

SIGNIFICANCE: The described EEG parameters may have complementary utility as determinants of non-dopaminergic involvement in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app