Add like
Add dislike
Add to saved papers

Downregulation of ROS1 enhances the therapeutic efficacy of arsenic trioxide in acute myeloid leukemia cell lines.

The present study investigated the function of ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) in regulating the migration and proliferation of acute myeloid leukemia (AML) cells through Wnt/β-catenin signaling, and in arsenic trioxide (ATO) treatment. The migration and proliferation of multiple ROS1-silenced leukemic cell lines was assessed, and the expression levels of proteins associated with Wnt/β-catenin signaling were determined using western blot analysis. Compared with the AML control cells, ROS1-knockdown cells exhibited increased migration and proliferation, and the significant downregulation of β-catenin expression. Additionally, ROS1 knockdown sensitized AML cells to the effects of chemotherapeutic ATO. The results of the present study demonstrated that, in leukemic cell lines, ROS1 counteracted the effects of ATO on migration and proliferation, suggesting that ROS1 may be a potential therapeutic target in patients with AML undergoing ATO treatment. The results of the present study provided novel insight into the function of ATO and ROS1 in regulating AML progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app