Add like
Add dislike
Add to saved papers

A Redox-Based Superoxide Generation System Using Quinone/Quinone Reductase.

Superoxide (O2 .- ) generation in biological systems is achieved through some of the most complex enzymatic systems. Of these, only xanthine/xanthine oxidase has been used for in vitro biochemical studies. However, it suffers from limitations such as a lack of suitable heterologous expression system for xanthine oxidase and the irreversible consumption and low solubility of xanthine under physiological conditions. Herein, we report a redox-based, enzyme-catalyzed system, in which autoxidation of hydroquinone to quinone via semiquinone results in superoxide generation. Quinone is reduced back to hydroquinone by using the NfsB (oxygen-insensitive nitroreductase) enzyme of Escherichia coli strain K-12 and nicotinamide adenine dinucleotide phosphate hydride (NADPH; which is regenerated by using the glucose/glucose dehydrogenase system). This new system relies on quinones that can be recycled and have superior water solubility, as well as enzymes that are heterologously expressed. By using a variety of quinones and reaction conditions, along with a comparison of real-time fluorescence, menadione has been identified as the optimal substrate for superoxide generation. The new redox-based system presents a viable alternative for studying the biochemistry of superoxide under different physiological and pathological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app