Add like
Add dislike
Add to saved papers

Surface and Defect Chemistry of Oxide Materials.

Chimia 2018 May 31
Oxides and oxide-derived materials find ubiquitous applications in many industrial applications. These materials usually contain point defects, the concentration and type depending on the synthesis and operating conditions. Many of the functional properties are determined or strongly affected by the presence of these point defects. Despite steady advances in experimental techniques it is still difficult to unambiguously identify point defects and resulting atomic-scale mechanisms from experiment alone. Atomic-scale computational approaches such as density functional theory (DFT) provide an alternative approach that ideally complements experimental investigations. The resulting fundamental understanding of defect-induced mechanisms combined with the knowledge of how to tailor a point-defect profile to induce new functionality opens exciting new avenues to engineer novel material properties. This account discusses some case studies of defect-induced functionality in the area of oxide electronics and photocatalysis, giving a general flavour of our current understanding of the role of defects in these applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app