Add like
Add dislike
Add to saved papers

The Effect of Differentially Designed Fusion Proteins to Elicit Efficient Anti-human Thyroid Stimulating Hormone Immune Responses.

The production of human thyroid stimulating hormone (hTSH) immunoassays requires specific antibodies against hTSH which is a cumbersome process. Therefore, producing specific polyclonal antibodies against engineered recombinant fusion hTSH antigens would be of great significance. The best immunogenic region of the hTSH was selected based on in silico analyses and equipped with two different fusions. Standard methods were used for protein expression, purification, verification, structural evaluation, and immunizations of the white New Zealand rabbits. Ultimately, immunized serums were used for antibody titration, purification and characterization (specificity, sensitivity and cross reactivity). The desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. Structural analyses indicated that only the bigger antigen has showed changed 2 dimensional (2D) and 3D structural properties in comparison to the smaller antigen. The raised polyclonal antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum and negligible. The fusion which was solely composed of the tetanus toxin epitopes led to better protein folding and was capable of immunizing the host animals resulting into high titer antibody. Therefore, the minimal fusion sequences seem to be more effective in eliciting specific antibody responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app