Add like
Add dislike
Add to saved papers

Effect of Sand on Knee Load During a Single-Leg Jump Task: Implications for Injury Prevention and Rehabilitation Programs.

Richardson, MC, Murphy, S, Macpherson, T, English, B, Spears, I, and Chesterton, P. Effect of sand on knee load during a single-leg jump task: implications for injury prevention and rehabilitation programs. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to determine potential differences in landing strategies and subsequent joint loads at the knee (knee abduction moment [KAM], anterior-posterior [AP] tibial translation, and total knee shear force) when jumping onto sand and firm ground from both a level surface and a 30-cm height. Firm ground would act as the control for the study. Seventeen subjects (age: 23.6 ± 3.7 years; body mass: 67.7 ± 10.3 kg; height: 168.5 ± 7.4 cm) performed 3 single-leg jumps on their dominant leg for each of the 4 conditions tested (ground level, sand level, ground height, and sand height). A repeated-measures design investigated the effect of sand on KAM, AP tibial translation, and total knee shear force. Data were analyzed using magnitude-based inferences and presented as percentage change with 90% confidence limits. Results indicated that sand had a clear beneficial effect on KAM, which was possibly moderate during a drop jump (30 cm) and possibly small from a level jump. Sand also had a possibly moderate beneficial effect on AP tibial translation from a level jump. The effect of sand on total knee shear force was unclear. These results suggest that sand may provide a safer alternative to firm ground when performing jump tasks commonly used in anterior cruciate ligament and patellofemoral joint injury prevention and rehabilitation programs. Sand may also allow for an accelerated rehabilitation program because jumping activities could potentially be implemented more safely at an earlier stage in the process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app