Add like
Add dislike
Add to saved papers

Branched polyethyleneimine-assisted boronic acid-functionalized silica nanoparticles for the selective enrichment of trace glycoproteins.

Talanta 2018 July 2
Boronate affinity materials have attracted more and more attention in extraction, separation and enrichment of glycoproteins due to the important roles that glycoproteins take on in recent years. However, conventional boronate affinity materials suffer from low binding affinity mainly because of the use of single boronic acids. This makes the extraction of glycoproteins of trace concentration become rather difficult or impossible. Here we present a novel boronate avidity material, polyethyleneimine (PEI)-assisted boronic acid-functionalized silica nanoparticles (SNPs). Branched PEI was applied as a scaffold to amplify the number of boronic acid moieties. While 3-carboxybenzoboroxole, exhibiting high affinity and excellent water solubility toward glycoproteins, was used as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the boronate avidity SNPs exhibited strong binding strength toward glycoproteins with dissociation constants of 10-7 M, which was the highest among reported boronic acid-functionalized materials that can be applied for glycoproteomic analysis. Such a high avidity enabled the selective extraction of trace glycoproteins as low as 0.4 pg/mL. This feature greatly favored the selective enrichment of trace glycoproteins from real samples. Meanwhile, the boronate avidity SNPs was tolerant of the interference of abundant sugars. In addition, the PEI-assisted boronate avidity SNPs exhibited high binding capacity and low binding pH. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app