Add like
Add dislike
Add to saved papers

Physakengose G induces apoptosis via EGFR/mTOR signaling and inhibits autophagic flux in human osteosarcoma cells.

Phytomedicine 2018 March 16
BACKGROUND: Physakengose G (PG) is a new compound first isolated from Physalis alkekengi var. franchetii, an anticarcinogenic traditional Chinese medicine. PG has shown promising anti-tumor effects, but its underlying mechanisms remain unknown.

PURPOSE: To investigate the anti-cancer effects of PG on human osteosarcoma cells and the underlying mechanisms.

METHODS: Cell viability was measured by MTT assay. Apoptosis rates, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, and acidic vesicular organelles (AVOs) formation were determined by flow cytometry. Protein levels were analyzed by immunofluorescence and western blotting.

RESULTS: PG inhibited cell proliferation and induced apoptosis in human osteosarcoma cells. PG treatment blocked EGFR phosphorylation and suppressed epidermal growth factor (EGF)-induced activation of downstream signaling molecules, such as AKT and mTOR. PG treatment resulted in lysosome dysfunction by altering lysosome acidification and LAMP1 levels, which led to autophagosome accumulation and autophagic flux inhibition.

CONCLUSION: PG inhibits cell proliferation and EGFR/mTOR signaling in human osteosarcoma cells. Moreover, PG induces apoptosis through the mitochondrial pathway and impedes autophagic flux via lysosome dysfunction. Our findings indicate that PG has the potential to play a significant role in the treatment of osteosarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app