Add like
Add dislike
Add to saved papers

High-Pressure Evolution of Crystal Bonding Structures and Properties of FeOOH.

Recent conflicting reports on the high-pressure structural evolution of iron oxide-hydroxide (FeOOH) offer starkly contrasting scenarios for the hydrogen and oxygen cycles in Earth's interior. Here we explore the crystal structures of FeOOH using an advanced search algorithm combined with first-principles calculations. Our results indicate a phase transition around 70 GPa from the known ε-FeOOH to a new pyrite-type FeOOH (P-FeOOH) phase, and the two phases remain nearly degenerate in an unusually large pressure range. These findings clarify and explain the experimentally observed structural evolution and extensive phase coexistence. Moreover, our structure search identifies a previously unknown monoclinic (M-FeOOH) phase that is energetically close to P-FeOOH at pressures near the core-mantle boundary. We further reveal that the high-pressure FeOOH phases exhibit remarkably distinct sound-velocity profiles, providing key material properties essential to interpreting seismic data and elucidating FeOOH's influence on geophysical and geochemical processes in deep Earth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app