Add like
Add dislike
Add to saved papers

Robust adaptive Lyapunov-based control of hepatitis B infection.

A new robust adaptive controller is developed for the control of the hepatitis B virus (HBV) infection inside the body. The non-linear HBV model has three state variables: uninfected cells, infected cells and free viruses. A control law is designed for the antiviral therapy such that the volume of infected cells and the volume of free viruses are decreased to their desired values which are zero. One control input represents the efficiency of drug therapy in inhibiting viral production and the other control input represents the efficiency of drug therapy in blocking new infection. The proposed controller ensures the stability and robust performance in the presence of parametric and non-parametric uncertainties (and/or bounded disturbances). The global stability and tracking convergence of the process are investigated by employing the Lyapunov theorem. The performance of the proposed controller is evaluated using simulations by considering different levels of uncertainties. Based on the obtained results, the proposed strategy can achieve its desired objectives with different cases of uncertainties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app