Journal Article
Review
Add like
Add dislike
Add to saved papers

[Retinoic Acid Prevents Dendritic Cells from Inducing Novel Inflammatory T Cells That Produce Abundant Interleukin-13].

 Vitamin A (VA) plays critical roles in gut homeostasis. Dendritic cells in mesenteric lymph nodes (MLN-DCs) can metabolize VA to retinoic acid (RA), thereby inducing gut-tropic lymphocytes and enhancing peripheral differentiation of regulatory T cells expressing forkhead box P3. We found that MLN-DCs from VA-deficient mice induced a distinct inflammatory T helper type 2 (Th2)-cell subset that produced abundant interleukin-13 (IL-13) and expressed receptors for homing to skin and inflammatory sites but not to the intestine. IL-6-neutralizing antibodies or RA abrogated the induction of this subset. On the other hand, RA receptor antagonists allowed MLN-DCs from VA-sufficient mice to induce a similar T-cell subset. IL-6 induced the differentiation of this subset from naive CD4+ T cells upon activation with antibodies against CD3 and CD28, and RA receptor antagonists enhanced this induction. It has been considered that VA deficiency reduces Th2-dependent antibody responses. However, oral administration of an antigen to VA-deficient mice failed to induce immune tolerance but primed strong IL-13-dependent immunoglobulin G1 (IgG1) responses and IgE responses that caused skin allergy. These results suggest that MLN-DCs possess the latent ability to induce IL-13-producing inflammatory Th2 cells and that RA prevents them from inducing IL-13-dependent allergic or inflammatory responses to orally administered antigens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app