Add like
Add dislike
Add to saved papers

Soluble Oligomeric Nucleants: Simulations of Chain Length, Binding Strength, and Volume Fraction Effects.

Recent theories and simulations suggest that molecular additives can bind to the surfaces of nuclei, lower the surface energy, and accelerate nucleation. Experiments have shown that oligomeric and polymeric additives can also modify nucleation rates of proteins, ice, and minerals; however, general design principles for oligomeric or polymeric promoters do not yet exist. Here we investigate oligomeric additives for which each segment of the oligomer can bind to surfaces of nuclei. We use semigrand canonical Monte Carlo simulations in a Potts lattice gas model to study the effects of oligomer chain length, volume fraction, and binding strength. We find that increasing each of those parameters lowers the nucleation barrier. At extremely low oligomer concentrations, the nucleation kinetics can be modeled as though each oligomer is a heterogeneous nucleation site in solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app