Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PtaB, a lim-domain binding protein in Aspergillus fumigatus regulates biofilm formation and conidiation through distinct pathways.

The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. The developmental modifiers MedA, StuA, and SomA regulate GAG biosynthesis, but the mechanisms underlying this regulation are poorly understood. PtaB is a lim-domain binding protein that interacts with the transcription factor SomA and is required for normal conidiation and biofilm formation. Disruption of ptaB resulted in impaired GAG production and conidiation in association with a markedly reduced expression of GAG biosynthetic genes (uge3 and agd3), developmental regulators (medA and stuA), and genes involved in the core conidiation pathway. Overexpression of medA and dual overexpression of uge3 and agd3 in the ΔptaB mutant increased biofilm formation but not conidiation, whereas overexpression of core conidiation genes rescued conidiation but not biofilm formation. Overexpression of stuA modestly increased both conidiation and biofilm formation. Analysis of ptaB truncation mutants revealed that overexpression of the lim-domain binding region restored conidiation but not biofilm formation, suggesting that ptaB may govern these processes by interacting with different partners. These studies establish that PtaB governs GAG biosynthesis at the level of substrate availability and polymer deacetylation and that PtaB-mediated biofilm formation and conidiation are largely independent pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app