Add like
Add dislike
Add to saved papers

Ursolic acid and carvacrol may be potential inhibitors of dormancy protein small heat shock protein16.3 of Mycobacterium tuberculosis.

Small heat shock protein16.3 (sHSP16.3) is a crucial protein for survival of Mycobacterium tuberculosis (MTB) in its host. Besides, this protein acts as a molecular chaperone during stress and is indispensable for MTB's growth, virulence and cell wall thickening. sHSP16.3 is also a promising candidate for vaccine, serodiagnosis and drug design as well. In the present study, we have targeted sHSP16.3 with two phytochemicals namely ursolic acid and carvacrol using in silico approach. Molecular docking analysis showed that both phytochemicals (ursolic acid and carvacrol) has docked with sHSP16.3 and shown tendency to inhibit the function of this vital protein of MTB. In addition, both compounds have exhibited strong compatibility with sHSP16.3 during whole 60 ns duration of molecular dynamics simulation. Further, the molecular mechanic/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energies were calculated which showed that both phytocompounds have stable and favourable binding energies causing strong binding with binding site of sHSP16.3. Taking together, the data of present study suggest that both phytocompounds may be potential inhibitor of sHSP16.3 of MTB and a best alternative to standard anti-tuberculosis drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app