Add like
Add dislike
Add to saved papers

Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater.

Membrane application in water reclamation is challenged by fouling which deteriorates membrane performance in terms of permeate flux and solute rejection. Several studies focusing on antifouling membranes incorporated with nanoparticles have been carried out, but these membranes are not yet a viable solution due to their high energy requirements and inability to completely remove or degrade trace organic compounds (TOrCs). Therefore, this study aims at fabricating polyethersulfone (PES) membranes for treatment of pharmaceutical wastewater by using a unique membrane synthesis approach. PES membranes were synthesised by casting two different solutions before coagulation. Therefore, the synthesis technique was called 'double-casting phase inversion'. The membranes were impregnated with nanohybrid graphene oxide-zinc oxide (GO-ZnO) to increase their hydrophilicity, rejection of pharmaceuticals (by decreasing membrane-solute hydrophobic interactions), resistance to organic fouling and photodegradation properties. The addition of GO-ZnO increased membrane hydrophilicity and pure water permeability. The rejection of TOrCs and anti-fouling properties were also improved due to a reduction in membrane-solute and membrane-foulant hydrophobic interactions, respectively. In addition to improved TOrC rejection properties and resistance to fouling, GO-ZnO/PES membranes degraded Brilliant Black.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app