Add like
Add dislike
Add to saved papers

CTLA-4 expression in the non-small cell lung cancer patient tumor microenvironment: diverging prognostic impact in primary tumors and lymph node metastases.

The immune checkpoint receptor CTLA-4 plays a crucial part in negatively regulating T cell activation and maintaining self-tolerance. It is frequently overexpressed in a variety of malignancies, yet its prognostic impact in non-small cell lung cancer (NSCLC) remains unclear. We constructed tissue microarrays from tumor tissue samples and evaluated the immunohistochemical expression of CTLA-4 in 536 patients with primary resected stage I-IIIA NSCLC. Expression of CTLA-4 was analyzed in tumor and stromal primary tumor tissue and in locoregional metastatic lymph nodes. CTLA-4 expression in neither tumor epithelial cells (T-CTLA-4) nor stromal cells (S-CTLA-4) of primary tumors was significantly associated with disease-specific survival (DSS) in all patients. However, high S-CTLA-4 expression independently predicted significantly improved DSS in the squamous cell carcinoma subgroup (HR 0.62, 95% CI 0.41-0.93, P = 0.021). In contrast, there was an independent negative prognostic impact of T-CTLA-4 expression in metastatic lymph nodes (HR 1.65, 95% CI 1.03-2.65, P = 0.039). Our results indicate that the expression of CTLA-4 has diverging prognostic impacts in metastatic NSCLC lymph nodes versus primary tumors. The presented results highlight important differences in the tumor microenvironments of primary and metastatic NSCLC tissues, and have potential to guide treatment and clinical sampling strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app