Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ephemeral ecological speciation and the latitudinal biodiversity gradient.

The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app